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ABSTRACT

Infrared (IR) detection using crystalline silicon or III-V compounds is commonly utilized but often challenged by bulkiness

and inefficiency. With the development of autonomous driving and machine vision, there is a growing need for IR technology

to incorporate compact neural architectures. In this study, IR-sensitive p-type disordered tellurium sub-oxides (TeO,) thin

films are deposited via an inorganic blending strategy. By integrating a luminescent dielectric layer, synergistic charge transfer

and photon-induced secondary excitation endow TeO,-based IR-visible adaptive sensors (IVAS) with broadband detection and

memory capabilities. The IR-driven modulation of IVAS convolutional weights enables super-resolution image reconstruction

even under suboptimal conditions. This IVAS-based system achieves a peak signal-to-noise ratio of 27.55 dB (compared to 26.85 dB

conventionally), a structural similarity index measure of 0.94 (compared to 0.88 conventionally), and a 13.8% reduction in mean

absolute error. These findings highlight TeO,-based IVAS as a robust and adaptive solution for IR machine vision systems.

1 | Introduction

Current infrared (IR) detection technologies predominantly
utilize photodiodes and phototransistors based on crystalline
silicon or III-V compound semiconductors [1-3]. These well-
established platforms are known for their high sensitivity and
rapid response speeds, making them suitable for passive thermal
imaging, stable performance under variable lighting conditions,
and effective operation in optically challenging environments
[4-7]. Despite their widespread use, these technologies face
inherent limitations, particularly in the advanced fields, such as
autonomous sensing, immersive visual computing, and spectrally
adaptive machine vision [8]. Notably, their narrow spectral
response, dependence on complex growth processes, and limited
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compatibility with standard silicon-based electronics present
significant barriers to large-scale integration, on-chip process-
ing, and the development of next-generation intelligent sensing
systems [9-11].

To address these limitations, alternative materials with broad-
band IR sensitivity, simplified processing, and compatibility with
silicon-based technologies are being actively explored [6, 12].
Among these, thin-film oxide semiconductors have attracted
considerable interest due to their low-temperature processability,
environmental stability, and suitability for large-area processing
[13]. However, most oxide semiconductors have wide bandgaps (>
2 eV), limiting their IR photoresponse [14-17]. In this context, p-
type tellurium oxide (TeO,) emerges as a promising candidate. Its
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tunable sub-1 eV optical bandgap, resulting from mixed oxidation
states and disordered lattice structures, provides intrinsic IR
sensitivity while maintaining the thermal and chemical stability
[18, 19]. Furthermore, TeO, is compatible with scalable, room-
temperature vacuum deposition techniques, such as sputtering
or thermal evaporation, enabling cost-effective and CMOS-
compatible device fabrication [20, 21]. While recent advances
have demonstrated high-performance p-type transistors based on
structural engineering of TeO, and broadband photodetection
through heterojunction design, these approaches remain funda-
mentally confined to the conventional paradigm of single-mode
photodetection or electronic switching [22, 23]. Furthermore,
the development of TeO,-based systems is hindered not only by
an incomplete understanding of composition-structure-property
relationships in disordered phases but also by the lack of architec-
tures capable of integrating sensing, memory, and computational
functions. Critically, the potential of TeO, for constructing adap-
tive perception systems remains largely unexplored, leaving a
significant gap between its device performance and applicability
in intelligent machine vision.

In this work, we employ an inorganic blending strategy to
fabricate p-type disordered TeO, thin films, achieving intrinsic
IR sensitivity and tunable electronic properties. Apart from
material optimization, we have constructed an infrared-visible
adaptive sensor (IVAS) through the integration of a luminescent
dielectric layer, where synergistic charge transfer and cascaded
secondary excitation enable broadband detection and memory
functionality. Most significantly, the IR illumination serves as
a dynamic control signal, enabling adaptive weight modulation
for processing visible-light images. By directly converting IR
signals into conductance changes, it implements a light control
mechanism. This approach fundamentally simplifies the system
architecture by merging the control and computing phases,
thereby facilitating in-situ weight modulation. The efficacy of
this IR-driven adaptation is validated through robust super-
resolution (SR) image reconstruction under challenging lighting
conditions. With IR-driven adaptive weight optimization enabled
by IVAS, we achieve performance improvements, including a
peak signal-to-noise ratio (PSNR) of 27.55 dB (compared to
26.85 dB conventionally), a structural similarity index measure
(SSIM) of 0.94 (vs 0.88 conventionally), and a 13.8% reduction in
mean absolute error (MAE).

2 | Results and Discussion
2.1 | SR Reconstruction Enabled by IVAS Array

To address the growing demands for adaptive sensing, we intro-
duce an IVAS architecture that couples a p-type TeO, thin-film
with a luminescent dielectric layer. As shown in Figure 1a, the
IVAS exhibits a dual-mode photoresponse, enabling broadband
sensitivity across the visible and IR region. This wide spectral
response arises from the synergistic interplay between interfa-
cial charge transfer and photon-induced secondary excitation
(Figure 1b). After that, the IVAS array is directly embedded
into a super-resolution convolutional neural network (SRCNN)
framework, functioning not only as a photodetector but also
as a hardware-level memory unit (Figure 1c). Light-induced
conductance modulation in the TeO, channel can be retained

and mapped to convolutional weights. Each IVAS pixel operates
as a reconfigurable unit under IR illumination, where the cor-
responding conductance programming supports environmental
adaptation (Figure 1d). This dynamic IR-driven weight modula-
tion facilitates the network to adapt its parameters in response
to challenging lighting (Figure le). As demonstrated in Figure 1f,
conventional SRCNN fails to reconstruct image fidelity under
low-light conditions [24]. In contrast, the IVAS-integrated system
recovers key spatial features by leveraging IR-driven weight
optimization (Figure 1g). This highlights the potential of IVAS
as a foundational element in intelligent, environment-adaptive
machine vision platforms.

2.2 | Characterizations of p-Type Disordered TeO,
Films

The IVAS device was fabricated using a p-type TeO, channel and
a luminescent dielectric layer, as confirmed by high-resolution
scanning transmission electron microscopy (HR-STEM) and
energy-dispersive X-ray spectroscopy (EDS) elemental mapping
(Figure 2a). The TeO, thin-film with a thickness of ~8 nm
was deposited via room-temperature thermal evaporation (See
the Methods section). The uniform and continuous TeO, films
were obtained using an inorganic blending strategy, exhibiting
a smooth surface with a roughness of 0.32 nm (Figures S1
and S2). As shown in Figure 2b, it reveals that the CsPbl,
perovskite quantum dots (PQDs) display distinct diffraction spots.
In contrast, the TeO, layer presents diffuse diffraction rings,
confirming its disordered property. The characteristic vibrational
modes of the helical chain structure in our TeO, are revealed by
Raman analysis, which shows three well-resolved peaks assigned
to fundamental phonon modes (Figure 2c) [25]. Furthermore,
X-ray photoelectron spectroscopy (XPS) verifies the simultane-
ous presence of both elemental Te® and oxidized Te*" states
(Figure 2d) [26-28].

During thermal evaporation, the oxygen content of TeO, films
can be precisely tuned by adjusting the Te/TeO, source ratio
(Figure S3), enabling systematic investigation of structural char-
acteristics across varying oxygen stoichiometries (x = 1.12, 1.60,
and 2). X-ray diffraction (XRD) patterns of all compositions
show the absence of diffraction peaks (Figure 2e; Figure S4),
indicating that they maintain their disordered properties [20, 29,
30]. To further elucidate the amorphization mechanism, melt-
quenching-based molecular dynamics (MD) simulations were
performed (Figure 2f;, Figure S5) [31, 32]. Radial distribution
function (RDF) analysis reveals the retention of short-range Te—O
bonding (~2 A) in disordered TeO,. At the same time, long-
range order characteristic of the crystalline phase is suppressed
(Figure 2g; Figure S6). These findings suggest that the struc-
ture preserves local coordination motifs and that disordering
predominantly disrupts extended atomic networks [33, 34].

To elucidate the oxidation-state-dependent charge transport mod-
ulation, we conducted electrical characterization on TeO, films (x
=112 and 1.60). The bare TeO, (x = 1.12)-based transistor exhib-
ited a field-effect mobility (ugg) of 3.80 cm?-V~!.s7!, while the
TeO, (x = 1.60) device showed a reduced pgg of 1.52 cm?-V-1.s7!
(Figure S7). This pronounced mobility disparity results from
the introduction of higher oxygen levels. This process creates a
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FIGURE 1 | (a) Structural schematic of the IVAS device, highlighting its broadband photodetection under visible and IR illumination.
(b) Operational mechanism showing synergistic charge transfer and photon-induced secondary excitation. (c) Neural network architecture of SRCNN.
(d) Dual-mode functionality of IVAS, enabling IR sensing and visible-light memory. (e) Adaptive weight mapping protocol within the SRCNN enabled
by IR-driven modulation. (f) Conventional super-resolution under dark conditions (g) Enhanced image reconstruction achieved through IR-driven

adaptive weight modulation in SRCNN. Photograph credits of 1c, 1f, and 1g: He Shao.

dense distribution of trap states and scattering centers, which in
turn impede carrier transport [35, 36]. Despite its lower mobility,
the TeO, (x = 1.60) device displays an enhanced I/l ratio,
attributable to improved carrier regulation at a cost of the reduced
charge percolation [37, 38].

23 | Luminescent Dielectric Engineering of IVAS

After identifying TeO, with balanced charge transport and
switching characteristics, the TeO,-based IVAS was subsequently
fabricated by integrating with a luminescent dielectric layer. The

luminescent dielectric layer consists of CsPbl; PQDs embedded
in polystyrene (PS). The PQDs were synthesized via the hot-
injection method (as illustrated in Figure S8), yielding a uniform
size distribution and stable black-phase characteristics (Figures
S9 and S10) [39, 40]. The luminescent dielectric layer mainly
contributes to enhanced optoelectronic performance in visible
regions while preserving the fundamental electronic charac-
teristics of TeO, films. As shown in Figures S11 and S12, the
transfer and output characteristics exhibit typical p-type behavior,
with an on/off ratio of 10* and a mobility of 2.5 cm? V7! g71,
Furthermore, the influence of TeO, film thickness on device
behavior was explored (Figure S13), with statistical mobility and
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FIGURE 2 | (a)Cross-sectional HR-STEM image and corresponding EDS elemental mapping of the device. (b) HRTEM image showing the layered
device architecture. (c) Reman spectra of the TeOy film. (d) XPS of Te 3d and O 1s core levels of the TeO, film. (e) The XRD pattern of the disordered
TeOy film. (f) Atomic structure of the disordered TeOy. (g) RDFs of the disordered and crystalline TeOy.

I,,/I summarized in Figure S14. These findings reveal that
increasing the TeO, film thickness beyond 10 nm results in higher
off-state currents and a reduced on/off current ratio, due to the
presence of excessive unoxidized Te [41]. Conversely, decreasing
the thickness below 6 nm results in a significant reduction in
mobility, primarily due to an insufficient carrier density.

To assess device uniformity and operational consistency, a 5
X 5 IVAS array was fabricated and characterized (Figure SI5).
Individual devices exhibited intense and persistent photocurrent
responses under illumination at 450, 532, and 635 nm (Figure 3a)
[42]. The current mapping across the array (Figure 3b; Figure
S16) reveals uniform responsivity, confirming the reproducibility
of the fabrication process. Under 100 consecutive light pulses
(2 Hz), devices display robust and stable memory behavior across
all tested wavelengths (Figure 3c), highlighting their capabil-

ity for broadband optical memory. The memory mechanism
in our devices is governed by complementary charge-trapping
processes. The trapping state at the TeO,/PQDs heterointer-
face enables the persistent photocurrent, while intrinsic defects
within the PQDs and the surrounding PS matrix further con-
tribute to charge retention [43-45]. In contrast, control devices
comprising only TeO, channels exhibited volatile behavior under
identical conditions (Figure S17), underscoring the essential
role of the dielectric layer in enabling persistent photocurrent
memory.

To further elucidate the synergistic optical interactions within the
hybrid structure, a cascaded secondary excitation mechanism is
proposed and experimentally validated. As shown in Figure 3d,
the photoluminescence (PL) spectrum of the luminescent layer
exhibits a sharp emission peak centered at ~685 nm, with the inset
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FIGURE 3 | (a) Photoresponse of IVAS under a single light pulse at 450, 532, and 635 nm (Vpg = —1 V and V = 5 V). (b) Spatial photocurrent
distribution across the 5 x 5 IVAS array under 450 nm illumination. (c) Wavelength-dependent response under 100 consecutive light pulses.
(d) Absorption spectrum of the TeOy, film and PL spectrum of the PQD film. Inset: IVAS array under 365 nm UV illumination. (¢) TRPL of the PQD film
and PQDs/TeOy composite film. (f) TA of the PQD film and PQDs/TeO, composite film at different delay times. The TA contour maps (AA-A-time) of
the (g) PQD film and (h) PQDs/TeO, composite film under 450 nm excitation. (i) Decay dynamics at 670 nm (1. = 450 nm).

photograph displaying red luminescence under optical excitation
[46]. Concurrently, the TeO, layer demonstrates strong optical
absorption in the near-IR region, attributed to its narrow bandgap
of approximately 0.8 eV. Critically, the emission spectra of the
luminescent layer overlap substantially with the absorption edge
of TeO,, enabling the emitted photons to be reabsorbed by the
TeO, channel. This reabsorption triggers a secondary photoexci-
tation process within TeO,. Thus, the observed memory behavior
is also primarily governed by the synergistic interplay between
cascaded photon recycling and efficient charge transfer at the
heterointerface. Although alternative pathways such as trap-
assisted tunneling and interface dipole effects were considered,
the collective evidence most consistently supports this coupled
mechanism as being responsible for the memory behavior.

Following this, PL and time-resolved PL (TRPL) measurements
were conducted to investigate the charge transfer behavior. As
shown in Figure S18, the TeO,/PQDs composite film exhibits
a significant reduction in photoluminescence (PL) intensity
compared to the pristine PQD film. This fluorescence quenching
is corroborated by the TRPL results in Figure 3e, which show a
markedly shortened lifetime in the composite film [47, 48]. The
observed simultaneous decrease in both PL intensity and lifetime
provides strong evidence for the efficient charge transfer from the
PQDs to the TeO, layer [45, 49]. To gain further insights into the
excited-state dynamics, femtosecond transient absorption (TA)
spectroscopy was performed on both pristine and composite
films under 450 nm excitation. The TA spectra at 0.2 and 0.6 ps
delay (Figure 3f) show a pronounced ground-state bleaching
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(GSB) centered near 670 nm, corresponding to the PQDs band
edge. In pristine PQDs, a positive excited-state absorption (ESA)
component emerges beyond 685 nm, which is notably suppressed
in the PQDs/TeO, composite structure.

The two-dimensional TA contour mappings (Figure 3g,h) further
visualize the temporal evolution of this photo-induced evolu-
tion. Compared to the PQD film, the composite film shows
an accelerated decay of both GSB and ESA signals, indicating
faster carrier relaxation dynamics [50, 51]. The suppression of
ESA in the composite film is particularly significant in the red
region, implying that the emitted photons are reabsorbed by the
broadband-absorbing TeO, layer. To quantify the relaxation kinet-
ics, the GSB decay traces at 670 nm were extracted (Figure 3i).
The composite film exhibits a much shorter carrier lifetime
than the pristine PQDs, in agreement with the TRPL results.
The consistent trend in TRPL and TA confirms that the TeO,
layer serves as an energy extraction channel through radiative
reabsorption.

2.4 | IR-Visible Synergistic Effect in IVAS Array

Beyond the visible light irradiation, the IVAS device exhibits pro-
nounced sensitivity to IR illumination. As shown in Figure 4a,b,
the photocurrent increases monotonically with increasing light
intensity, highlighting the device’s broadband and tunable opto-
electronic response. The observation of a pronounced photore-
sponse in a bare TeO,-transistor under 1550 nm irradiation
confirms that the TeO, layer itself is the primary site for
IR detection (Figure S19). This is consistent with its intrinsi-
cally narrow bandgap (~0.8 eV) and pronounced Urbach tail,
which provides localized states for efficient photon capture via
phonon-assisted transitions. Furthermore, the precise voltage-
dependent photocurrent modulation in the IVAS (Figure 4c)
substantiates that direct photocarrier generation and control
occur within the TeO, layer, facilitating efficient photocurrent
generation [52, 53].

To investigate the wavelength-selective modulation, sequential
visible and IR irradiation were applied to the device (Figure S20).
As shown in Figure 4d, under continuous 450 nm optical pulses
at 0.1 Hz, the device exhibits distinct multi-level conductance
states. During the intervals between pulses, stimulation with
higher-frequency IR light induces discrete conductance levels. As
shown in Figure 4e, a total of sixteen conductance states (4 bits)
are uniformly distributed and exhibit an approximately linear
relationship, which is critical for analog computing and dynamic
weight mapping in neural networks. A statistical analysis of
conductance modulation ratios under IR and visible illumina-
tion (o/u) reveals a pronounced initial-state-dependent response,
suggesting a synergistic and programmable conductance tuning
operation (Figure 4f). This dynamic persists under additional
visible-light wavelengths (Figure S21), further validating the
broadband feedback process.

The underlying mechanisms of IVAS under illumination are
further clarified through an analysis of the energy band struc-
ture (Figure 4g,h). Absorption and UPS measurements (Figures
S22 and S23) confirm the formation of a type-I heterojunction
between PQDs and TeO,, promoting directional carrier transport

[54]. Upon visible-light exposure, both PQDs and TeO,, undergo
excitonic dissociation, resulting in the generation of electron-
hole pairs. The photogenerated holes in PQDs migrate into the
TeO, layer, while electrons remain trapped within the PQDs
or at the interface, resulting in persistent charge accumulation
and a memory effect. Moreover, photoluminescent emission
from PQDs provides an additional energy recycling pathway,
wherein the emitted red photons are reabsorbed by TeO, through
cascaded photon harvesting. Under 1550 nm illumination, photo-
generated carriers in TeO, exhibit rapid recombination, leading
to a characteristic volatile photocurrent behavior. The syn-
ergy effect of visible-induced charge retention and IR-induced
volatile photoresponse provides an adaptive optoelectronic
platform.

2.5 | IR-Driven Adaptive Image SR Reconstruction

The IVAS architecture was further integrated with SRCNN to
achieve simultaneous high-fidelity image reconstruction and
enhanced feature extraction (Figure 5a) [55, 56]. The SRCNN
framework was specifically selected for its architectural compat-
ibility with our hardware implementation, where its constrained
network depth and convolutional topology significantly relax
the precision requirements for conductance control in the array
(Figure S24). The super-resolution performance of the IVAS
architecture was evaluated using a DIV2K dataset for training,
with low-resolution inputs prepared for 2 X upscaling [24].
After training the SRCNN to obtain optimized weights, the
learned parameters were mapped to the conductance states of our
hardware array. Experimentally captured images were then used
for testing. A systematic comparison was conducted between the
software-based model and the IVAS-implemented counterpart to
assess their respective reconstruction performance. As shown in
Figure 5b, both software-based and IVAS-implemented SRCNNs
achieve PSNR values exceeding 28 dB based on the pre-trained
weights, confirming the preservation of structural integrity and
detail.

To systematically evaluate the robustness of the IVAS architecture
to luminance variations in super-resolution tasks, we conducted
comparative experiments under both standard and reduced
brightness conditions. The original images were processed to
create a controlled low-light benchmark, with brightness reduced
by 40% to simulate challenging imaging conditions (Figure 5c;
Note S1). An SRCNN model was first pre-trained on normal-
light images to obtain baseline weights (Figure 5d; Notes S2 and
S3). Crucially, instead of creating multiple specialized models, we
trained a unified system. It was achieved by jointly optimizing the
baseline weights with a modulation network that learns to gen-
erate weight perturbations (AW) in response to IR illumination.
The modulated weights Wigecive = Whase + ®AWpR are optimal
for the current lighting condition. These modulated weights are
integrated into all three convolutional layers of the SRCNN (Note
S4), enabling dynamic feature extraction.

As illustrated in Figure 5e, for inputs with normal brightness,
SRCNN achieves higher reconstruction quality compared to
bicubic interpolation, particularly in edge clarity and detail
retention. The PSNR values are confirmed to be 27.65 dB
(bicubic) and 28.40 dB (SRCNN). Under low-light conditions,
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and pulse number. (f) Statistical analysis of photoconductance changes (o:

1550 nm-induced variation; u: per-pulse change for 450 nm) across sixteen conductance states. (g,h) Energy band evolution and charge carrier transfer

process of IVAS under visible and IR illumination.

the conventional SRCNN with pre-trained weights exhibits sig-
nificant performance degradation. In contrast, the fine-tuned
model demonstrates marked improvements, benefiting from the
IR-assisted functionality of the IVAS array. The PSNR improves
from 26.85 to 27.55 dB, SSIM increases from 0.88 to 0.94, and
MAE is reduced by 13.8%, indicating the array’s ability to recover
features in poorly illuminated scenes. Furthermore, the IVAS
architecture leverages local conductance adaptation in different
brightness environments to mitigate pixel saturation effects. As
shown in Figure S25, these improvements highlight the array’s
capacity for preserving image details under undesirable lighting
conditions.

3 | Conclusion

The proposed optoelectronic IVAS array, featuring IR-assisted
adaptive weight modulation, offers a revolutionary approach to
achieving efficient super-resolution imaging. By leveraging a p-
type TeO, channel layer coupled with a luminescent dielectric
layer, the IVAS system dynamically adjusts convolutional weights
to ensure robust feature extraction under diverse lighting condi-
tions. The integration of IR modulation significantly enhances
image reconstruction quality, as evidenced by an increase in
PSNR from 26.85 to 27.55 dB, an improvement in SSIM from 0.88
to 0.94, and a 13.8% reduction in MAE compared to conventional
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FIGURE 5 | (a) Schematic of the multimodal processing strategy of the IVAS array. (b) Performance comparison of HR image reconstruction
between software-based and IVAS-based SRCNN. (c) Scene images under normal brightness and 40% brightness reduction. (d) Pre-trained SR weights
(normal brightness) versus IR-driven weights under low-light conditions. (e) Bicubic versus SRCNN on normal-brightness images (top) and fixed
pretrained weights versus adaptive weights on low-brightness images (bottom). Photograph credits of 5a, 5b, 5c, and 5e: He Shao.

SRCNN approaches. As the demand for intelligent and adaptive
imaging systems increases, the IVAS approach presents a promis-
ing pathway to address these challenges, leveraging the strengths
of advanced materials science and cutting-edge computational
techniques.

4 | Experimental Section/Methods
4.1 | Measurement and Characterization

The optical properties of PQDs and TeO, thin films were
measured using Shimadzu UV-3600 and FLS-980 (Edinburgh
Instruments). The femtosecond TAS was operated with the pump
pulse of 450 nm, 150 fs, 1 kHz, and 100 uJ/cm?. The morphologies

of the TeO, films were confirmed using AFM (Bruker Dimension
Icon AFM) and SEM (Hitachi S3400N). The crystal structure
of PQDs and TeO, films was confirmed by XRD (D2 PHASER,
Bruker). The chemical bonding and elemental composition were
characterized by Raman spectroscopy (WITec RAMAN alpha
300R) and XPS measurements (Escalab 220i XL, VG Scientific).
The structure and EDS mapping were examined using high-
resolution transmission electron microscopy (HRTEM, Thermo
Scientific, Talos F200X). The optoelectronic properties of the
fabricated devices were evaluated using an Agilent 4155C semi-
conductor parameter analyzer combined with a precision probe
station. For photodetector measurements, lasers with different
wavelengths, including visible (450, 532, and 635 nm) and infrared
(1550 nm), were used as light sources. The incident light powers
(P) were determined using a power meter (PM400, Thorlabs).
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4.2 | Device Fabrication

Bottom-gate top-contact thin-film transistors were fabricated
on heavily doped p-type silicon substrates with 270 nm of
thermally grown SiO,. The fabrication process involved the
following sequential steps: First, the SiO, surface was subjected
to oxygen plasma treatment (5 min, 50 W) to enhance surface
hydrophilicity and remove organic contaminants. Subsequently,
10 mg/mL PQDs solution in toluene was mixed with 6 mg/mL
PS solution at a 1:1 volume ratio. The mixture was then spin-
coated onto the substrate at 3000 rpm for 60 s. The synthesis
process of CsPbl; PQDs was introduced in Figure S8. The
deposition sources with controlled oxygen stoichiometry were
synthesized through solid-state reactions between high-purity
Te (99.999%) and TeO, (99.99%) powders, where the TeO, (x =
1.12) composition was achieved using a 270:30 mg (9:1 molar
ratio) Te/TeO, mixture and the TeO, (x = 1.60) composition was
prepared with a 250:50 mg (5:1 molar ratio) Te/TeO, mixture.
The mixture was then deposited onto the substrate using thermal
evaporation under high-vacuum conditions (base pressure < 4
x 107 Torr) at a controlled deposition rate of 0.8 A/s. Film
thickness was precisely monitored in situ using an INFICON
SQC-310 deposition controller and a quartz crystal microbalance.
Subsequently, the substrate was annealed in air at 100 °C for
30 min to stabilize its oxidation state. Both the active channel
and source/drain electrodes were defined through shadow mask
patterning to minimize gate leakage currents and ensure accurate
electrical characterization. The device fabrication was completed
by electron-beam evaporation of nickel source/drain electrodes
through the shadow mask.

4.3 | DFT Calculation

All calculations are performed within the framework of density
functional theory using the projector augmented plane-wave
method, as implemented in the Vienna ab initio simulation
package. The generalized gradient approximation proposed by
Perdew, Burke, and Ernzerhof is selected for the exchange-
correlation potential. The long-range van der Waals interaction
is described by the DFT-D3 approach. For electronic structure
calculations, a plane-wave cutoff energy of 420 eV was employed,
and the Kohn-Sham equations were solved with an energy
convergence criterion of 107 eV. Gamma-point sampling was
used for the Brillouin zone integration in all calculations. The
disordered amorphous TeO, (x = 1.12) structures were generated
through a melt-quenching protocol within the framework of ab
initio molecular dynamics (AIMD). The initial atomic configu-
rations were randomized by premelting at 5000 K for 1 ps, then
melting at 1200 K for 5 ps and rapid quenching to 400 K with
a cooling rate of -100 K/ps. Final structural relaxations were
performed until atomic forces converged to less than 0.02 eV/A.
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